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Mean Square End-to-End Distance of a Semiflexible
Polymer on the Bethe Lattice
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A combinatorial method to calculate the mean square end-to-end distance
(R2) of a polymer on a Bethe lattice is used. The case of an anisotropic lattice
and semiflexible polymers is considered. The distance on the Cayley tree is
defined by embedding the tree on an N-dimensional Euclidean space considering
that every bend of the polymer defines a direction orthogonal to all the previous
ones. The semiflexible polymer is effectively equivalent to a flexible one if one
considers an effective (noninteger) coordination number. Although an analytical
calculation is performed, a closed expression for (R2) is possible only for the
isotropic case. Numerical results are shown for the anisotropic case. Plots of
(R2) against N for different values of the anisotropy parameter y are shown.
The power dependence for N does not depend on the anisotropy as expected,
but the linear coefficient increases on increasing the anisotropy. The anisotropy
tends to stretch the polymer.

KEY WORDS: anisotropy; Bethe lattice; semiflexible polymer; statistical
mechanics.

1. INTRODUCTION

Chain polymers are extensively discussed in the literature [1�6]. We consider
the problem of a semiflexible polymer on a Bethe lattice [7], calculating
exactly the mean square end-to-end distance of walks on the Cayley tree
which start at the central site and have N steps, assuming that the walks
will never reach the surface of the Cayley tree, thus remaining in its core.
We also calculate the mean square end-to-end distance in the case when
the lattice is considered anisotropic, that is, when the edges of the lattice
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are not equivalent with respect to their occupation by a polymer bond. The
definition of the distance between two sites of the Cayley tree is not
obvious, and some possibilities assuming that the tree may be embedded
in a hypersurface of a non-Euclidean space have been explored [8]. In
this paper, however, we used a simpler definition, considering the Cayley
tree in the thermodynamic limit to be embedded in an infinite-dimensional
Euclidean space.

The result for (R2)(N, z), for the isotropic case, has the scaling form
of N2F(zN ) in the limit N � �; z � 0; Nz=constant. Here z is the
Boltzmann factor associated with each pair of perpendicular consecutive
steps of walk. Not surprisingly the scaling function F(x) is equal to the one
obtained for random walks with no immediate return on a hypercubic
lattice with the same coordination number of the Bethe lattice considered.
This might be expected since Bethe lattice calculations lead to mean-field
critical exponents. Also, in the limit N � � for nonzero values of z, the
scaling behavior (R2) rN 2& with the classical value &= 1

2 is verified in the
expression for (R2)(N, z). Our definition of the Euclidean distance between
two points of the Cayley tree is similar to earlier results relating this
distance to the chemical distance measured along the chain [9]. We
address the question of the choice of an appropriate nonlinear scaling field
|(z) for the problem. It should be noted that it has been shown that simu-
lation or exact enumeration results for semiflexible polymers on bidimen-
sional lattices display a much cleaner scaling behavior when convenient
nonlinear scaling fields are used [6].

In Section 2 we define the model and show the calculation of the mean
square end-to-end distance analytically for the isotropic Bethe lattice. The
anisotropy is introduced into the model in Section 3 and the computation
of (R2) is done up to a point, but we were not able to perform a final
summation analytically in this case. Thus, for the anisotropic case, we present
some numerical results in Section 4, as well as final discussions.

2. MODEL

In this section we consider the model that was defined in Ref. 10. For
completeness we give here the underlying calculation scheme, showing the
combinatorial analysis for the isotropic case. We consider a Cayley tree of
coordination number q and place a chain on the tree starting at the central
site. Since we want the Cayley tree to be an approximation of a hypercubic
lattice in d dimensions, we restrict ourselves to even coordination numbers
q=2d. As in the hypercubic lattice, the bonds incident on any site of the
tree are in d directions, orthogonal to each other. The central site of the
tree is connected to q other sites, which belong to the first generation of
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sites. Each of the sites of the first generation is connected to (q&1) sites
of the second generation, and this process continues until the surface of the
tree is reached, after a number of steps equal to the number of generations
in the tree. Upon reaching a site of the i th generation coming from a site
belonging to generation (i&1), there are (q&1) possibilities for the next
step of the walk toward site of generation (i+1). One of them will be in
the same direction as the previous step, while the remaining (q&2) steps
will be in directions orthogonal to all previous steps.

In the second case, a statistical weight z is associated with the elemen-
tary bend in the walk. Now we assert that the (q&2) bonds orthogonal to
the first step are also orthogonal to any bond of the tree connecting sites
of earlier generations. Let us stress two consequences of this supposition.
(i) A tree of coordination number q with Ng generations will be embedded
in a space of dimension

D=q�2+(Ng+1)[(q�2)&1] (1)

The sites of the Cayley tree will be sites of a hypercubical lattice in D
dimensions. (ii) By construction, there will never be loops in the tree,
a property which is true for any Cayley tree. It is well known [7] that it may
be shown by other means that the Cayley tree is an infinite-dimensional
lattice in the thermodynamic limit Ng � �.

Any N-step walk on the Cayley tree will visit a subset of sites of the
D-dimensional hypercubic lattice defining a subspace whose dimensionality
is between 1 and N. The limiting cases are those of a polymer without any
bend (rod), which is one-dimensional, and a polymer where we have a
bend at every internal site, and since at each bend the new bond is in a
direction orthogonal to all precedent bonds of the polymer, the polymer is
embedded in a N-dimensional subspace. Since the initial site of the chain
is supposed to be at the central site of the tree, the end-to-end distance will
be given by the modulus of the position vector of the final site, denoted R9 .
For a polymer with m bends, the number of components of this vector will
be equal to m+1. For simplicity, we assume that each bond is of unit
length, so that the components of R9 will be integers. We want to compute
the mean value of R9 over all polymers with N steps:

(R2) =
�R9 N

m
zmR2

�R9 N
m

zm (2)

where m is the number of bends in the walk and the sum is over all con-
figurations R9 N

m of polymers with N steps and m bends and over the numbers
of bends. Besides the first and the last components, the values of the other
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m&1 components of R are the numbers of steps between successive bends
in the walk. We should remember that there are q&2 possibilities for each
bend. So we may rewrite Eq. (2) as

(R2) =
�N&1

m=0 amBN, m

�N&1
m=0 amAN, m

(3)

where a=(q&2) z includes all dependence on coordination number and
statistical weight as long as q�4, and

AN, m=:
R9 N

m

1 (4)

and

BN, m=:
R9 N

m

:
m+1

i=0

R2
i (5)

Here the sum is made with m fixed. Also, Ri is the number of steps in each
stretch made of consecutive steps without bends. The sums in AN, m and
BN, m are explicitly calculated in Ref. 10 and are given by

AN, m=
(N&1)!

m! (N&m&1)!
(6)

and

BN, m=
(m+1)(2N&m) N!

(m+2)! (N&m&1)!
(7)

Performing the sum in the denominator of Eq. (3) while taking Eq. (6) into
account, we have

(R2)=
N

[1+a]N&1 _2(N+1) :
N&1

m=0
\N&1

m + am

m+2
& :

N&1

m=0
\N&1

m + am& (8)

The first sum gives [10]

:
N&1

m=0 \
N&1

m + am

m+2
=

[1+a]N [aN&1]+1
N(N+1) a2 (9)
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Substituting this result into Eq. (8) and performing the second sum, we
finally, get the expression

(R2) =
2[1+a]

a2 _Na&1+
1

[1+a]N &&N (10)

The properties of the mean square end-to-end distance, Eq. (10) in some
limiting cases, show that our result has the expected behavior. First, we
observe that when the bend statistical weight z vanishes, we have

lim
z � 0

(R2) =N 2 (11)

for any number of steps N. This rod-like behavior is expected, since no
bend will be present in the walk. In the opposite limit of infinite bending
statistical weight, the result is

lim
z � �

(R2)=N (12)

which is also an expected result, since in this limit there is a bend at every
internal site of the chain, so that, according to the definition of the end-to-
end distance we are using, the vector R9 in this situation will have N com-
ponents, all of them being equal to 1.

In the limit of an infinite chain N � � we get, for nonzero z,

lim
N � �

(R2) =
(2+a) N

a
(13)

and we note that the expected scaling behavior (R2)rN2& is obtained
with the mean-field exponent &= 1

2 . The asymptotic behavior of (R2) is
different for zero and nonzero a, as may be appreciated by comparing
Eqs. (12) and (13), respectively. So we may look for the crossover between
both behaviors in the limit of N � �; z � 0; Nz=constant, getting the
result

lim
N � �; a � 0; aN=x

(R2) =N2F(x) (14)

with a scaling function

F(x)=
2(x&1+exp(&x))

x2 (15)

It should be stressed that this scaling function is the same as the one obtained
by taking the limit of N � �, z � 0, Nz=constant on the calculation of the
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mean square end-to-end distance for random walks on a hypercubic lattice
without immediate return, which may be obtained from Flory's general
result for semiflexible polymers [1].

3. ANISOTROPY IN THE BETHE LATTICE

Let us now turn our attention to the calculation of the mean square
end-to-end distance of a polymer with an intrinsic anisotropy on the Bethe
lattice. This anisotropy will come into play through an additional statistical
weight y ascribed for any link in a particular direction. Upon every q�2
bend directions at each step of the polymer, one may be a particular direc-
tion. The vector R9 with m bends has m+1 linear stretches. The binary
variable is now ascribed for each step i so that vi is 1 if the stretch is in the
particular direction and vi is 0 for the other (q&2)�2 directions. The
averaging will be done with the statistical weight

zm `
m+1

i=1

yvi Ri (16)

The quadratic end-to-end distance will be obtained as

(R2) =
�N&1

m=0 zm � R9 N
m

�vm
>m+1

i=1 c(vi&1 , vi ) yvi Ri �m+1
i=1 R2

i

�N&1
m=0 zm �R9 N

m
�vm

>m+1
i=1 c(vi&1 , vi ) yvi Ri �m+1

i=1 1
(17)

Here c(vi&1 , vi ) are multiplicity coefficients for successive stretches. For the
first stretch we define

c(v&1 , 0)=(q&2), c(v&1 , 1)=2 (18)

where the labels 0 and 1 refer to nonparticular and particular directions,
respectively. For the next bends the factors will be

c(0, 0)=(q&4), c(0, 1)=2, c(1, 0)=q&2, c(1, 1)=1 (19)

The sums over R9 N
m take into account all conformations of the polymer with

(m+1) stretches and N links, but the sums over vm count the 2m+1 dif-
ferent configurations described by the binary variables vi=0, 1, which take
values for each m+1 stretch.

The sum over the conformations will be best performed introducing
the variables

Sm+1( j )=\ `
m

k=1

:
vk=0, 1+ `

m+1

i=0

c(vi&1 , vi ) yvi Ri | vm+1= j (20)
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where j=1 if the last stretch is on the particular direction and j=0
otherwise. These variables may also be defined recursively as

Sm+2(0)=(q&4) Sm+1(0)+(q&2) Sm+1(1) (21)

Sm+2(1)=2yRm+2Sm+1(0) (22)

It is quite difficult to obtain explicit expressions for the sums Sm+1(0)+
Sm+1(1) for general values of q. Let us first consider the case q=4, for which
the set of recursive definitions for S decouples. The sum then becomes

Sm+1(0)+Sm+1(1)=2m+1 _ `
m+1

i
even

yRi+ `
m+1

i
odd

yRi& (23)

Considering k links in the even stretches and (N&k) in the odd ones, this
equation is rewritten

Sm+1(0)+Sm+1(1)=2m+1[ yk+ yN&k] (24)

Now we define

BN, m( y)=:
R9 N

m

:
vm

`
m+1

i=1

c(vi&1 , vi ) yvi Ri :
m+1

i=1

R2
i (25)

Using Eqs. (20) and (24), we obtain the following relation:

BN, m( y)=2m+1 :
N&no

k=ne

[ yk+ yN&k] \ :
R9 k

ne&1

:
i

even

R2
i + :

R9 N&k
no&1

:
i

odd

R2
i + (26)

Here no(ne) means the total number of links in the odd(even) stretches. The
sum over R9 k

ne&1(R9 k
n0&1) takes into account the configuration of the part of

the polymer with only even(odd) stretches which have the total of k(N&k)
links. These sums coincide with the ones for the isotropic polymer performed
in the first section. We obtain the expression

BN, m( y)=2m+1 :
N&no

k=ne

[ yk+ yN&k]{ nek! (2k&ne+1)(N&k&1)!
(ne+1)! (k&ne)! (no&1)! (N&k&no)!

+
no(N&k)! (2N&2k&no+1)(k&1)!

(no+1)! (N&k&no)! (ne&1)! (k&ne)!= (27)
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The sums are quite distinct for the cases when the total number of bends
m is odd or even. For the case m odd (m=2n&1), the variable ne(no)
reduces to m�2((m�2)+1). In this case simple algebraic manipulations give

BN, 2n&1( y)=
n22n+1yn

(n+1)! (n&1)!

_[&4yPN&2n&2
n +(2N 2&5Nn+4n2+N ) PN&2n

n&1 ] (28)

where the sums over k have all been encoded on

PN
n = :

N

j=0

( j+n)! (N& j+n)!
j ! (N& j )!

y j (29)

In the case of m even, we have obtained

BN, 2n( y)=
22n+1

(n&1)! (n+2)!

_ :
N&2n&1

j=0

( j+n+1)! (N&n& j&1)!
j ! (N&2n&1& j )!

xN, n, j [ y j+n+ yN&n& j ]

(30)

where

xN, n, j=(4n+6) j 2&(2+4(N&2n&1)(n+1)) j

+(n+1)(n(n+2)+(N&n)(2N&3n+1)) (31)

An analytical summation on both the j and the n variables seems to be very
difficult. We are thus led to a numerical analysis.

4. RESULTS AND DISCUSSION

Let us study the dependence of the mean square end-to-end distance
of the polymer as a function of N. The isotropic case for q=4 and nonzero
bend fugacity z presents the scaling as

lim
N � �

(R2)=cN (32)

with c=1. The power of N in this behavior was expected for the Bethe
lattice and should not depend on the introduction of the anisotropy, as dis-
cussed earlier. The linear coefficient c, on the other hand, could depend on
details of the model. We then plot the (R2) variable against N for different
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Fig. 1. Plot of ln (R2) versus ln N for different anisotropy
parameter values and for z=0.5.

values of the anisotropy parameter y. We fix the representative value
z=0.5. In Fig. 1 we have done this for two values of y other than the value
y=1, which reproduces the isotropic case.

Two aspects of this plot are most noticeable. First, although the power
dependence for large N is the same for any value of y, the straight curves
they reach differ asymptotically. This means that the linear coefficient c
increases as y becomes different from 1. The anisotropy tends to straighten
the polymer, increasing its size while at the same time maintaining the criti-
cal exponent 1. On the other hand, the value of N for which the scaling
regime is achieved also increases with the value of y getting far from 1. This
means that the regime where the detailed behavior of the polymer size with
the number of points is important persists more for the anisotropic case.
Figure 2 shows more clearly the larger is the value of N necessary for
reaching the scaling region, as y becomes more different from 1.

Another interesting behavior appears if we take values of y larger than 1.
We have noticed the equivalence between the cases y and y$ whenever
y=1�y$. This can be understood as a peculiarity of q=4. Taking y greater
than 1 actually represents a preference for the other directions. Since for
q=4 there are only two directions, the case with y greater then 1 turns out
to be equivalent to the case with y � (1�y).
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Fig. 2. Plot of ln((R2) )� ln N versus N for different anisotropy
parameter values and for z=0.5.

It would be interesting to continue this work in two directions. First, it
seems feasible, although not trivial, to perform the analytical treatment of
the anisotropic case, if we consider y=1&x and perform an expansion
in the small variable x. Another interesting direction would be to consider
the effect of anisotropy for polymers with coordination numbers randomly
distributed.
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